Algebra 2

1-06 Evaluate Determinants (12.3)

Determinant

- Number associated with \qquad matrices
- Symbolized by \qquad or \qquad

Determinant of $\mathbf{2 \times 2}$ matrix

- Multiply along the \qquad diagonal and \qquad the product of the \qquad diagonal.
$\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right|$

Determinant of $\mathbf{3 \times 3}$ Matrix

- Copy the first \qquad behind the matrix and then \qquad the products of the \qquad diagonals and the product of the \qquad diagonals.
$\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$

Area of a Triangle

$$
\text { Area }= \pm \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

where x 's and y 's are the coordinates of the \qquad
Find the area of a triangle with vertices of $(2,4),(5,1)$, and $(2,-2)$

Cramer's Rule

1. Write the equations in \qquad form
2. Make a matrix out of the \qquad
2×2 System
$\begin{aligned} a x+b y & =e \\ c x+d y & =f\end{aligned}$ gives $x=\frac{\left|\begin{array}{ll}e & b \\ f & d\end{array}\right|}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}, y=\frac{\left|\begin{array}{ll}a & e \\ c & f\end{array}\right|}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}$

Algebra 2 1-06
$2 x+y=1$
$3 x-2 y=-23$

3×3 System

- Same as \qquad system
- The denominator is the determinant of the \qquad matrix and the numerator is the \qquad only with the column of the \qquad you are solving for replaced with the \qquad —.

```
2x-y+6z=-4
6x+4y-5z=-7
-4x-2y+5z=9
```

